3.965 \(\int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx\)

Optimal. Leaf size=77 \[ \frac {2 \sqrt {b x} (c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} (e+f x)^p \left (\frac {f x}{e}+1\right )^{-p} F_1\left (\frac {1}{2};-n,-p;\frac {3}{2};-\frac {d x}{c},-\frac {f x}{e}\right )}{b} \]

[Out]

2*(d*x+c)^n*(f*x+e)^p*AppellF1(1/2,-n,-p,3/2,-d*x/c,-f*x/e)*(b*x)^(1/2)/b/((1+d*x/c)^n)/((1+f*x/e)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {135, 133} \[ \frac {2 \sqrt {b x} (c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} (e+f x)^p \left (\frac {f x}{e}+1\right )^{-p} F_1\left (\frac {1}{2};-n,-p;\frac {3}{2};-\frac {d x}{c},-\frac {f x}{e}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[((c + d*x)^n*(e + f*x)^p)/Sqrt[b*x],x]

[Out]

(2*Sqrt[b*x]*(c + d*x)^n*(e + f*x)^p*AppellF1[1/2, -n, -p, 3/2, -((d*x)/c), -((f*x)/e)])/(b*(1 + (d*x)/c)^n*(1
 + (f*x)/e)^p)

Rule 133

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(c^n*e^p*(b*x)^(m +
 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*x)/c), -((f*x)/e)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rule 135

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c^IntPart[n]*(c +
d*x)^FracPart[n])/(1 + (d*x)/c)^FracPart[n], Int[(b*x)^m*(1 + (d*x)/c)^n*(e + f*x)^p, x], x] /; FreeQ[{b, c, d
, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !GtQ[c, 0]

Rubi steps

\begin {align*} \int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx &=\left ((c+d x)^n \left (1+\frac {d x}{c}\right )^{-n}\right ) \int \frac {\left (1+\frac {d x}{c}\right )^n (e+f x)^p}{\sqrt {b x}} \, dx\\ &=\left ((c+d x)^n \left (1+\frac {d x}{c}\right )^{-n} (e+f x)^p \left (1+\frac {f x}{e}\right )^{-p}\right ) \int \frac {\left (1+\frac {d x}{c}\right )^n \left (1+\frac {f x}{e}\right )^p}{\sqrt {b x}} \, dx\\ &=\frac {2 \sqrt {b x} (c+d x)^n \left (1+\frac {d x}{c}\right )^{-n} (e+f x)^p \left (1+\frac {f x}{e}\right )^{-p} F_1\left (\frac {1}{2};-n,-p;\frac {3}{2};-\frac {d x}{c},-\frac {f x}{e}\right )}{b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 77, normalized size = 1.00 \[ \frac {2 x (c+d x)^n \left (\frac {c+d x}{c}\right )^{-n} (e+f x)^p \left (\frac {e+f x}{e}\right )^{-p} F_1\left (\frac {1}{2};-n,-p;\frac {3}{2};-\frac {d x}{c},-\frac {f x}{e}\right )}{\sqrt {b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[((c + d*x)^n*(e + f*x)^p)/Sqrt[b*x],x]

[Out]

(2*x*(c + d*x)^n*(e + f*x)^p*AppellF1[1/2, -n, -p, 3/2, -((d*x)/c), -((f*x)/e)])/(Sqrt[b*x]*((c + d*x)/c)^n*((
e + f*x)/e)^p)

________________________________________________________________________________________

fricas [F]  time = 0.94, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x} {\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p}}{b x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x)*(d*x + c)^n*(f*x + e)^p/(b*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p}}{\sqrt {b x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x, algorithm="giac")

[Out]

integrate((d*x + c)^n*(f*x + e)^p/sqrt(b*x), x)

________________________________________________________________________________________

maple [F]  time = 0.14, size = 0, normalized size = 0.00 \[ \int \frac {\left (d x +c \right )^{n} \left (f x +e \right )^{p}}{\sqrt {b x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x)

[Out]

int((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p}}{\sqrt {b x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x + c)^n*(f*x + e)^p/sqrt(b*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (e+f\,x\right )}^p\,{\left (c+d\,x\right )}^n}{\sqrt {b\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e + f*x)^p*(c + d*x)^n)/(b*x)^(1/2),x)

[Out]

int(((e + f*x)^p*(c + d*x)^n)/(b*x)^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**n*(f*x+e)**p/(b*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________